• Open Daily: 10am - 10pm
    Alley-side Pickup: 10am - 7pm

    3038 Hennepin Ave Minneapolis, MN
    612-822-4611

Open Daily: 10am - 10pm | Alley-side Pickup: 10am - 7pm
3038 Hennepin Ave Minneapolis, MN
612-822-4611
Continuous Optimization for Data Science

Continuous Optimization for Data Science

Paperback

CalculusGeneral MathematicsPre-Calculus

PREORDER - Expected ship date August 15, 2025

ISBN10: 9819801508
ISBN13: 9789819801503
Publisher: World Scientific Publishing Company
Published: Aug 15 2025
Pages: 300
Language: English
The text is divided into three main parts: unconstrained optimization, constrained optimization, and linear programming. The first part addresses unconstrained optimization in single-variable and multivariable functions, introducing key algorithms such as steepest descent, Newton, and quasi-Newton methods.The second part focuses on constrained optimization, starting with linear equality constraints and extending to more general cases, including inequality constraints. It details optimality conditions, sensitivity analysis, and relevant algorithms for solving these problems.The third part covers linear programming, presenting the formulation of LP problems, the simplex algorithm, and sensitivity analysis. Throughout, the text provides numerous applications to data science, such as linear regression, maximum likelihood estimation, expectation-maximization algorithms, support vector machines, and linear neural networks.

Also from

Haviv, Moshe

Also in

General Mathematics